Performance optimization of self-powered deep ultraviolet photodetector based on PEDOT:PSS/SnO2 organic/inorganic p–n heterojunction by embedding a nitrogen-doped graphene

نویسندگان

چکیده

A self-powered organic–inorganic p–n heterojunction deep ultraviolet (DUV) photodetector (PD) was fabricated based on the polymer poly(3,4-ethylene-dioxythiophene):polystyrene sulfonate (PEDOT:PSS), with an in situ transferred composite film PEDOT:PSS-nitrogen-doped graphene (NGr)-coated SnO2 microwire. At 0 V bias, responsivity spectra of these two PDs both had a broadband response range 200–400 nm. The introduction NGr helped to reduce surface state and improve shortwave response, resulting blue shift peak position from 280 250 Compared PEDOT:PSS/SnO2 PD, light–dark current ratio PEDOT:PSS-NGr/SnO2 PD improved three orders magnitude 24.76 2.51 × 104; detectivity increased by 40 times 1.45 1011 5.85 1012 Jones; speed accelerated less than 1 s (with rise decay 0.35 0.14 s, respectively). performance improvement attributed intermediate layer forming SnO2, which broadened depletion strength built-in electric field, thereby reducing carrier recombination boosting speed. These findings indicate that introducing is effective way modify detector performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-powered visual ultraviolet photodetector with Prussian blue electrochromic display.

A novel self-powered ultraviolet (UV) photodetector was successfully constructed through combining Pt-modified TiO2 nanotubes and Prussian blue (PB)-modified ITO, in which the existence of UV could be judged easily by naked eye with the aid of PB for electrochromic display. More importantly, it could also self-recover without UV light illumination.

متن کامل

A self-powered UV photodetector based on TiO2 nanorod arrays

Large-area vertical rutile TiO2 nanorod arrays (TNAs) were grown on F/SnO2 conductive glass using a hydrothermal method at low temperature. A self-powered ultraviolet (UV) photodetector based on TiO2 nanorod/water solid-liquid heterojunction is designed and fabricated. These nanorods offer an enlarged TiO2/water contact area and a direct pathway for electron transport simultaneously. By connect...

متن کامل

A high performance quasi-solid-state self-powered UV photodetector based on TiO2 nanorod arrays.

Self-powered UV photodetectors based on TiO2 and ZnO nanorod arrays have attracted lots of attention in recent years due to their various advantages. Impressive performances were observed in photochemical cell based UV detectors. However, liquid electrolytes are not ideal for long-term operation and are inconvenient for practical applications. Hence there is an urgent demand for replacing liqui...

متن کامل

ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector

ZnO nanoneedle arrays were grown vertically on a fluorine-doped tin oxide-coated glass by hydrothermal method at a relatively low temperature. A self-powered photoelectrochemical cell-type UV detector was fabricated using the ZnO nanoneedles as the active photoanode and H2O as the electrolyte. This solid-liquid heterojunction offers an enlarged ZnO/water contact area and a direct pathway for el...

متن کامل

Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates.

A self-powered ultraviolet (UV) photodetector (PD) based on p-NiO and n-ZnO was fabricated using low-temperature sputtering technique on indium doped tin oxide (ITO) coated plastic polyethylene terephthalate (PET) substrates. The p-n heterojunction showed very fast temporal photoresponse with excellent quantum efficiency of over 63% under UV illumination at an applied reverse bias of 1.2 V. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Physics Letters

سال: 2023

ISSN: ['1520-8842', '0003-6951', '1077-3118']

DOI: https://doi.org/10.1063/5.0155537